
MIDTERM REPORT: THE BILLIARD PROBLEM

PHIL MAYER

1. Background

For my midterm project, I decided to study the billiards problem. Overall, it
interested me most because the behavior of a billiard ball can demonstrate chaotic
behavior; even with seemingly simple assumptions like mirror-like collisions, the
billiard’s motion is complex and depends highly on the initial conditions.

The problem begins by considering a billiard ball placed at some initial position
(x0, y0) on a table. We can consider tables of different sizes and dimensions, for
example rectangles, circles, and other “stadium” configurations. We impart the
billiard ball with some initial velocity ~v, then follow its motion given by the following
differential equations:

dx

dt
= vx ,

dy

dt
= vy

While we can also account for energy loss due to friction and collisions with the
table boundaries later on, we can assume that the kinetic energy of the ball (and
thus the magnitude of its velocity) remains constant. We also make the assumption
that when the ball hits one of the table boundaries, that the collision is perfectly
elastic and mirror-like; in other words the billiard’s angle of incidence θi with the
wall is equal to its angle of reflection θf :

θi = θf

Our task is then to plot the trajectory of the ball. While the trajectory is simple
to plot between collisions (by Euler’s method), some basic vector manipulation is
required to determine the new velocity vector after the collision. If we suppose the
initial velocity before a given collision can be denoted ~vi = [(vi)x, (vi)x], then the
components of the post-collision velocity vector ~vf depend on which component of
~vi was perpendicular and parallel to the table boundary. In short, given the perpen-
dicular component (vi)⊥ and the parallel component (vi)‖, we get the components of
the reflected velocity vector as:

(vf)⊥ = −(vi)⊥ , (vf)‖ = (vi)‖
1

2 PHIL MAYER

While this is conceptually fairly straight-forward, the implementation is relatively
difficult. A number of interesting difficulties arise, as I discuss in the next sections.

2. Numerical Methods

To solve the billiards problem numerically, we use Euler’s method to solve the
following ODE’s from last section:

dx

dt
= vx ,

dy

dt
= vy

As we have seen many times in class, after providing some initial conditions, the
motion of the ball at time step i in x and y is given by:

xi = xi−1 +
dx

dt
∆t = xi−1 + (vx)i−1∆t

yi = yi−1 +
dy

dt
∆t = yi−1 + (vy)i−1∆t

We can derive these two results by recalling that in order to estimate dx
dt

and dy
dt

, we
can use backwards differencing as follows for all indices i ≤ N for some number of
points N :

dx

dt
≈ xi − xi−1

∆t
,

dy

dt
≈ yi − yi−1

∆t

We then rearrange the two equations to obtain:

xi = xi−1 +
dx

dt
∆t , yi = yi−1 +

dy

dt
∆t

To calculate the new velocity vector after a collision, no overly complex numerical
methods are required.

3. Results

For my solution to the billiards problem, I decided to focus on having the most
correct (bug-free) implementation, thus was only able to focus on the case of a
square table. I considered the table to be a square region from x = −1 to x = 1 and
y = −1 to y = 1. I chose to place the ball at the origin for the sake of simplicity, so
(x0, y0) = (0, 0) in all executions of my program. To allow the user to experiment with
some different parameters, I left the choice of number of points, time precision, initial
velocity and initial angle all the user. Default values are used if invalid parameters
are selected, for example a negative number of points N .

The major problem I encountered while implementing my solution was accurate
collision detection, particularly around the corners. After writing my initial version

MIDTERM REPORT: THE BILLIARD PROBLEM 3

of the program, I noticed that for large values of N and large time steps ∆t, the bil-
liard ball would eventually escape the corners of the table. The problem was largely
caused by the following lines of code, which calculated the new velocity vector after
a collision was detected:

i f ((x [i] > xMax | | x [i] < xMin) && (y [i] > yMax | | y [i] < yMin)) {
vx [i] = −vx [i −1] ;
vy [i] = −vy [i −1] ;

}
e l s e i f (x [i] > xMax | | x [i] < xMin) {

vx [i] = −vx [i −1] ;
vy [i] = vy [i −1] ;

}
e l s e {

vx [i] = vx [i −1] ;
vy [i] = −vy [i −1] ;

}

While this algorithm does detect collisions in the corners of the table by simply
changing the sign of both components of the velocity, it does not handle corner
collisions effectively enough. The main issue with this approach is that it does
not account for the following situation: suppose the billiard collides with the table
boundaries in x and is very close to colliding in y. This algorithm adjusts the x
component of the velocity accordingly, but on the next time step, the billiard may
be off the table in the y direction. My solution solves this problem by detecting this
exact scenario.

Overall, my implementation runs fairly well, but does not demonstrate the chaotic
behavior seen in the “stadium” table configurations discussed in the textbook. For
example, consider the following trajectory and phase-space plots generated by my
program for N = 10000 points, a time step of ∆t = 0.01, an initial velocity of 4.0
m/s, and an initial angle of θ = 17◦:

4 PHIL MAYER

In future versions of my program, I would generalize the program to be able to
handle different table geometries, like circular or “stadium” configurations in which
chaos can be seen. It would also be interesting to allow the user to set the initial
position of the billiard, which would be a minor change.

MIDTERM REPORT: THE BILLIARD PROBLEM 5

4. Stability of the Numerical Method

Overall, the program’s behavior is stable given reasonable choices for ∆t, the time
step size, and the initial velocity vector. Time steps above ∆t = 2 tend to be
unreliable, given high velocities as well. Low-magnitude velocities and small time
steps, however, help the program behave predictably and accurately. Problems that
arise during executions of the program are not typically caused by approximation
error in Euler’s method; they tend to be caused by collisions around the corners. For
example, given N = 10000, a time step size of ∆t = 20, an initial velocity of v = 20
m/s, and an angle of θ = 10◦, we see that the billiard is able to escape out of both
corners in the following example:

